

Real World Cryptanalysis

Marc Stevens Cryptology Group CWI Amsterdam

Real World Cryptanalysis

Cryptographic Standards crucial for secure Internet

Gain confidence in security over time through extensive scrutiny (Before & After Standardization)

Cryptographic Standards crucial for secure Internet

Occasionally leap in cryptanalysis exposes unknown weaknesses

Real World Cryptanalysis

Theory Analyze

t	Bits Q_t : $b_{31} \dots b_0$	#
-3	10001010 11111100 01010110 11011110	32
-2	11000100 10011010 01100010 -0-10110	32
$^{-1}$	01111101 01010011 01101110 -0-11110	32
0	11101011 00011111 000010-+ +0-11010	32
1	0011 0-001 -1	13
2	.1.!0+1+0++00+	15
3	.1!.01	14
4	!10+-!. +1+++	13
5	!-0000 ^-0010 101+0000 1+000000	30
6	!+11-011 ++1101 1.+-1111 1.111111	30
7	!1 00.^!011^.^	15
8	!1+ 10!00+0+0	15
9	!.1010+.0!001^.0	14
10	00.!-010 00.110 .00+!+.0 .01+1-1-	25
11	110111 1100^011 01110+01 001-000+	31
12	.11^00+1 0010+1+^ 00^1111. 1-0-0+-0	30
13	^1+0 1-0+0+0- ++++++1 ++++0	32
14	1110-+ +++++0+1 00000010 +0	31
15	1+1+1-1- 011-1+10 0000000- 01110.	30
16	0100+ 10111+1+1 100-^01.	21
17	.0.^.+.1 .1.^.+1.^ .0.00.	13
18	1 .++1+1.11.	8
19	0^.+0	8
20	10	9
21	+1^0-0 1.^0^0	11
22	····+··· ···1.^·· +····· ·1.···+	6
23	^00-^ 1+.0	8
24	^110 001^	8
25	······ · · · · · · · · · · · · · · · ·	
26		4
27	1	14
28	+	4
29		2
30	···-·····	3
31	··· [_] ····· ······ ······ ······ ·····	
32	· · · · · · · · · · · · · · · · · · ·	
33		1
34 - 60		0
61		
62	+	
63	+	
64	+	

Practice Build

Demonstrate Apply

Cryptographic hash functions

A hash function is a deterministic mapping from arbitrary length inputs to a fixed length output

Collision resistance

Find $m \neq k$ such that H(m) = H(k)

Only max. (n/2)-bit security!

128-bit hash \Rightarrow 64-bit security 160-bit hash \Rightarrow 80-bit security 256-bit hash \Rightarrow 128-bit security 512-bit hash \Rightarrow 256-bit security Note: **Bitcoin** network computes

- 2⁶⁴ SHA-2 / sec
- 2^{80.5} SHA-2 / day
- 2⁸⁴ SHA-2 / 12days

⇒
breaks 80-bit security
brute-force in 1 day!

• Merkle-Damgård Construction

- Splits message into 512-bit blocks
- Processes blocks iteratively using compression function

- Security reduction
 - $\circ~$ collision hash function \Rightarrow collision compression function

MD5 / SHA-1 / SHA-256 compression function

Differential cryptanalysis

Differential cryptanalysis

- Consider two different instances Compress(CV,M) Compress(CV',M')
- Analyze differences

Differential path

- Precise description of all differences propagating through compression function
- Translate differential path into system of equations to solve to find M, M'

Differential cryptanalysis

System of equations

- Sufficient system of equations: Applying the input differences guarantees diff.path
- Simple equations on message and state bits

Solve

- First 16 steps easily solved
 ⇒ all message bit equations fulfilled
- Make predictable small changes to solve up to step 24 (amortizes cost of earlier steps)
- Probabilistically fulfill remaining steps (with many solutions up to step 24)

Deprecating MD5 in 2008

(known to be practically broken since 2004)

Joint work with:

Alexander Sotirov, Jacob Applebaum, Arjen Lenstra, David Molnar, Dag Arne Osvik, Benne de Weger

2008 [SSALMOdW]: Breakthrough on MD5

- Practical *chosen-prefix collision* attack on MD5
- Arbitrary different prefixes made to collide

Example chosen-prefix collision between

- Our website: https://i.broke.the.internet.and.all.i.got.was.this.tshirt.phreedom.org
- A hand-crafted sub-C.A. certificate

Using 200 PlayStation 3s

• Realistic Man-in-the-Middle attack against any secure website

- Responsible disclosure
 - Pre-informed Browsers and C.A.s
 - Rogue C.A. purposely crippled: only valid in August 2004
- MD5 deprecated within hours
- Software released for research
 - Anyone can create chosen-prefix collisions
 - ≈ 1 day on quadcore machine
 - https://github.com/cr-marcstevens/hashclash

- 2009: CABforum: MD5 deprecated for signatures
- 2012: supermalware Flame uses forged MD5 signature to push fake Windows Updates Discovery of yet-unknown variant MD5 collision attack
- 2016: SLOTH: Transcript collision attacks against TLS, IKE, SSH
- 2017: Oracle JRE rejects MD5 signatures Originally planned for Januari, was postponed till April
- 2018: US SWGDE (Scientific Working Group on Digital Evidence) Publication "explains that the use of the MD5 and SHA1 hash algorithms remains acceptable"

Deprecating SHA-1 in 2017

(known to be weak since 2005)

Joint work with

Ange Albertini, Elie Bursztein, Pierre Karpman, Yarik Markov

SHA-1 is not collision resistant

Collision attack with complexity 2⁶⁹ (4M core-years) [WangYY 2005] Later improved to 2⁶¹ (15,300 core-years) [Stevens 2012]

Projected costs of SHA-1 collisions [Schneier 2012]

\$2.77M in 2012
\$700K by 2015
\$173K by 2018 ⇒ "we can postpone 5 years.."
\$43K by 2021

(based on [Stevens 2012], Amazon EC2 rates & Moore's Law)

Practical SHA-1 collision remained open problem

$GPU \gg CPU$

- [S13]: SHA-1 collision attack with complexity $\approx 2^{61}$
- \Rightarrow CPU attack: 15.3K coreyears
- [SPK16]: attack complexity $\approx 2^{62.2}$ on GTX-970
- \Rightarrow GPU attack: 112 GPUyears
- ≈ \$100k renting fee (on Amazon EC2)
- **×7** lower cost in 2015 than predicted earlier by Schneier
- Initiated collaboration with Google

• Collaboration with Google [SBKAM17]

- Google Infrastructure: Large heterogenous cluster of CPUs & GPUs
- But: no direct access, proprietary Compile & Job system
- 'Blind' adaptation source-code by Google

• First near-collision attack

- Took 3583 core years $\approx 2^{60}$ SHA-1 compressions
- Run on 100k+ PCs in several weeks

• Second near-collision attack

- Tailored to 1st NC output
- Using NVIDIA Tesla K20, K40, K80
- Took \approx 114 K20years \approx 71 K80years \approx 2^{62.8} SHA-1
- Run on >3000 GPUs in just 8 calendar days
- Collision on <u>https://shattered.io/</u>

Reusable meaningful SHA-1 collision:

- 1 collision: infinite colliding PDF-pairs with distinct embedded JPGs
- Use JPG for page-content \Rightarrow arbitrary distinct page contents
- Use PDF image cropping \Rightarrow arbitrary distinct multi-page contents

DIY: https://github.com/nneonneo/sha1collider

- Project Webpage, Google Drive & Gmail check for SHA-1 collisions
- Unexpectedly collision can break Subversion repositories
 - Webkit developer submitted test to prove WebKit resistant to SHA-1 collisions
 - Broke Webkit repository
 - Internal deduplication uses SHA-1 and keeps only 1 colliding file
 - MD5 is used to check integrity \Rightarrow will always fail on checkout
- Git started moving away from SHA-1
- Git & GitHub now using strengthened SHA-1 implementation by default
- CA/Browser Forum: Ballot 152
 - Extend issuance SHA-1 certificates up to 1 Jan. 2017 (before: 1 Jan. 2016)
 - (unaltered: deprecate SHA-1 certificates after 1 Jan. 2017)
 - Our recommendations on 8 Oct. ensured Ballot did not pass on 16 Oct.
- TLS 1.3 draft 9
 - Deprecated all uses of SHA-1 digital signatures

From attacks to toys

Instant Collisions

- Instant collision scripts for many file formats
 - Instant, re-usable and generic collisions
 - Take any pair of files, run script, get colliding files
- SHA-1: PDF, HTML
- MD5
 - PDF
 - PNG, JPG, JP2
 - MP4, GIF
 - PE (windows executable)

Toys

Toys

Hashquines: documents that show their own MD5 hash

Thank you!